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Abstract

Propagation of Rayleigh–Lamb waves in an infinite plate of finite thickness and composed of microstretch elastic

material is considered. The top and bottom of the plate are cladded with finite layers of a homogeneous and inviscid liquid

(non-micropolar and non-microstretch). There exist two sets of boundary conditions at solid/liquid interface and the

choice on these sets of boundary conditions is arbitrary. Frequency equations are derived for symmetric and antisymmetric

modes of propagation for Rayleigh–Lamb waves propagation. It is found that the frequency equations for both the modes

of propagation are dispersive in nature and the presence of microstretch has negligible effect on the dispersion curves.

However, the attenuation coefficient is found to be influenced by the presence of microstretch in the plate with free

boundaries. Considerable effect of the liquid layers is noticed on the dispersion curves. Numerical computations are

performed for a specific model to compute the phase velocity and attenuation coefficient for different values of

wavenumber, for both symmetric and antisymmetric vibrations. Results of some earlier workers have been deduced as

special cases.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of wave propagation in an elastic plate of uniform material was first investigated by Lamb [1].
Since then the term ‘Lamb wave’ has been used to refer to an elastic disturbance propagating in a solid plate
with free boundaries. Lamb waves have found applications in multi-sensors and in the inspection of defects in
thin-walled materials. The density and viscosity sensing with Lamb waves is based on the principle that the
presence of liquid in contact with a solid plate changes the velocity and amplitude of the Lamb waves in the
plate with free boundaries. When a plate of finite thickness is bordered with homogeneous liquid half-spaces
on both sides then some part of the Lamb wave energy in the plate radiates into the liquid, while most of the
energy still remains in the solid. These are known as leaky Lamb waves. Wu and Zhu [2] and Zhu and Wu [3]
studied the propagation of Lamb waves in an elastic plate when both sides of the plate are bordered with
liquid layers. Sharma et al. [4] have also studied thermoelastic Lamb waves in a transversely isotropic plate
bordered with layers of inviscid liquid. Sharma and Pathania [5] studied the thermoelastic waves in a plate
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.12.002

ing author.

esses: kahlondilbag@yahoo.com (D. Singh), sktomar@yahoo.com (S.K. Tomar).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.12.002
mailto:kahlondilbag@yahoo.com
mailto:sktomar@yahoo.com


ARTICLE IN PRESS
D. Singh, S.K. Tomar / Journal of Sound and Vibration 302 (2007) 313–331314
bordered with inviscid liquid layers. They obtained the dispersion equations of Lamb waves and investigated
them in details. Literature dealing with the wave propagation in elastic plate of finite thickness and of infinite
extent may be found in several books, e.g. Ewing et al. [6], Viktorov [7], Graff [8]. The papers by Chimenti [9],
Shuvalov [10], Rogers [11] including many others are notable in this pertinent area of research.

Eringen and his co-worker [12,13] developed a nonlinear theory of simple microelastic solids. Later, Eringen
[14,15] developed a linear theory of micropolar elasticity which is a subclass of the theory of micromorphic
material earlier developed by him [16]. In classical theory of elasticity, the points of the material have
translational degrees of freedom and the transmission of the load across a differential element of the surface is
described by a force vector only. However, in the theory of micropolar elasticity, there is an additional degree
of freedom characterized by rotation of material points, and there is an additional kind of stress called couple
stress. Thus, in the classical theory of elasticity, the effect of couple stress is neglected. Later, Eringen [17]
developed a linear theory of thermo-microstretch elastic solid, which is a generalization of the linear theory of
micropolar elasticity and is again a subclass of the theory of micromorphic materials [16]. In microstretch
elastic solids, the material particles can undergo translation, rotation and stretches (contraction or extension).
The motion in microstretch elastic solids is characterized by seven degrees of freedom comprising
3-translation, 3-rotation and 1-stretch. The transmission of load across a differential element of the surface
of a microstretch elastic solid is described by a force vector, a couple stress vector and a microstretch vector.
The theory of microstretch elastic solid differs from the theory of micropolar elasticity in the sense that there is
an additional degree of freedom called stretch and there is an additional kind of stress called microstretch
vector. The materials like porous elastic material filled with gas or inviscid fluid, asphalt, composite fibers, etc.
lie in the category of microstretch elastic solids. The references in Refs. [12,13,18] have extensive literature on
the present field of research. Frequency equations for Lamb wave propagation in a micropolar plate bordered
with inviscid liquid layers was obtained by Tomar [19]. Recently, Tomar [20] investigated the propagation of
Rayleigh–Lamb waves in a plate of micropolar elastic material with voids.

In practical situations, it is extremely important to detect hidden cracks (and other possible faults) in
aerospace and other structures. This can be done by using ultrasonic waves. Lamb waves (which direct the
energy along the plate) are especially useful in thin plates. The other applications are in radar detection.
Recently, resurgent interest in Lamb waves is initiated by its applications in multisensors.

In the present work, we have discussed the propagation of Rayleigh–Lamb waves in a plate of homogeneous
and isotropic microstretch elastic material cladded with layers of same liquid. The liquid is assumed to be
homogeneous, inviscid and non-polar. The field equations and constitutive relations for microstretch elastic
material developed by Eringen are employed for mathematical analysis. The frequency equations
corresponding to symmetric and antisymmetric modes of vibrations of the plate are obtained. These
frequency equations are discussed for some limiting cases and some known results of earlier authors have been
reduced. Phase velocity and attenuation coefficient are also computed for a specific model and the effect of
microstretch is noticed on them.
2. Problem and basic equations

We consider a plate of finite thickness ‘2d’ and composed of a microstretch elastic solid material. The plate
is assumed to be of infinite extent in the x2y plane, whose top and bottom faces are bordered with layers of a
homogeneous inviscid liquid of thickness ‘h’. The x2y plane is taken to coincide with the middle plane of the
plate and the z-axis is taken normal to it along the thickness of the plate. The complete geometry of the
problem is shown in Fig. 1. We shall discuss the propagation of Rayleigh–Lamb waves in a two-dimensional
x2z plane.

The equations of motion in a linear homogeneous and isotropic microstretch elastic solid medium, in the
absence of body force, body couple and microstretch body force, are given by [18, pp. 254–255]

ðc21 þ c23Þrðr �UÞ � ðc
2
2 þ c23Þr � ðr �UÞ þ c23r � Lþ l̄0rP ¼ €U, (1)

ðc24 þ c25Þrðr � LÞ � c24r � ðr � LÞ þ o2
0r �U� 2o2

0L ¼
€L, (2)
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Fig. 1. Geometry of the problem.
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c26r
2P� c27P� c28r �U ¼

€P, (3)

where c21 ¼ ðlþ 2mÞ=r, c22 ¼ m=r, c23 ¼ K=r, c24 ¼ g=rj, c25 ¼ ðaþ bÞ=rj, o2
0 ¼ c23=j, c26 ¼ 2a0=rj, c27 ¼ 2l1=3rj,

c28 ¼ 2l0=3rj, l̄0 ¼ l0=r; l and m are Lame’s parameters, K ; a; b and g are micropolar constants, l0; l1 and
a0 are microstretch constants, r is the density of the medium, j is the micro-inertia, U and L are the
displacement and microrotation vectors, respectively, and P is the scalar microstretch. Superposed dots on
right-hand sides of Eqs. (1)–(3) indicate the temporal derivatives and other symbols have their usual meanings.

The constitutive relations in a linear homogeneous and isotropic microstretch elastic solid medium are given by [18]

tkl ¼ lUr;rdkl þ mðUk;l þUl;kÞ þ KðUl;k � eklrLrÞ þ l0Pdkl , (4)

mkl ¼ aLr;rdkl þ bLk;l þ gLl;k, (5)

bk ¼ a0P;k, (6)

where tkl is the force stress tensor, mkl is the couple stress tensor and bk is the microstretch tensor. Other symbols
have their usual meanings.

Since we are discussing a two-dimensional problem in x2z plane, so we shall take the following components
of displacement vector, microrotation vector and scalar microstretch, respectively, as

U ¼ ðuðx; zÞ; 0;wðx; zÞÞ; L ¼ ð0;Lðx; zÞ; 0Þ; P ¼ Pðx; zÞ.

With these considerations and using potentials f and c such that

u ¼
qf
qx
þ

qc
qz
; w ¼

qf
qz
�

qc
qx

,

into Eqs. (1)–(3), we obtain

ðlþ 2mþ KÞr2fþ l0P ¼ r
q2f
qt2

, (7)

ðmþ KÞr2c� KL ¼ r
q2c
qt2

, (8)

gr2Lþ Kr2c� 2KL ¼ rj
q2L
qt2

, (9)

6a0r2P� 2l0r2f� 2l1P ¼ 3rj
q2P
qt2

. (10)

It can be seen that Eqs. (7) and (10) are coupled in f and P, while Eqs. (8) and (9) are coupled in c and L. To
find out the time harmonic solution of these equations, we assume the form of c, f, L and P as follows:

ff;c;L;Pgðx; z; tÞ ¼ ff̄; c̄; L̄; P̄gðx; zÞ expf�iotg, (11)
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where o is an angular frequency, which is related to the wavenumber x and phase velocity c through the
relation o ¼ xc. Substituting Eq. (11) into Eqs. (7)–(10), we obtain

ðlþ 2mþ KÞr2f̄þ l0P̄ ¼ �ro2f̄, (12)

ðmþ KÞr2c̄� KL̄ ¼ �ro2c̄, (13)

gr2L̄þ Kr2c̄� 2KL̄ ¼ �rjo2L̄, (14)

6a0r2P̄� 2l0r2f̄� 2l1P̄ ¼ �3rjo2P̄. (15)

Again, we can see that Eqs. (12) and (15) are coupled in potentials f̄ and P̄, while Eqs. (13) and (14) are
coupled in potentials c̄ and L̄. By elimination procedure, it can be seen that these potentials satisfy the
following:

½r4 þ ‘1r
2 þ ‘2�ðP̄; f̄Þ ¼ 0, (16)

½r4 þ ‘3r
2 þ ‘4�ðL̄; c̄Þ ¼ 0, (17)

where

‘1 ¼
3rjo2 � 2l1

6a0
þ

3a0ro2 þ l20
3a0ðlþ 2mþ KÞ

� �
; ‘2 ¼

ro2ð3rjo2 � 2l1Þ
6a0ðlþ 2mþ KÞ

,

‘3 ¼
rjo2 � 2K

g
þ

gro2 þ K2

gðmþ KÞ

� �
; ‘4 ¼

rKo2

gðmþ KÞ

rjo2

K
� 2

� �
.

The solutions of Eqs. (16) and (17) can be obtained easily and finally the time harmonic solutions of
Eqs. (7)–(10) can be written as

f ¼ ðA sinhRzþ B coshRzþ C sinhSzþD coshSzÞeiðxx�otÞ, (18)

P ¼ aðA sinhRzþ B coshRzÞ þ bðC sinhSzþD coshSzÞeiðxx�otÞ, (19)

c ¼ ðE sinhPzþ F coshPzþ G sinhQzþH coshQzÞeiðxx�otÞ, (20)

L ¼ c0ðE sinhPzþ F coshPzÞ þ d 0ðG sinhQzþH coshQzÞeiðxx�otÞ, (21)

where the coupling constants a, b, c0 and d 0 are given by

a ¼ �fðc21 þ c23Þð�x
2
þ R2Þ þ o2g=l̄0; b ¼ �fðc21 þ c23Þð�x

2
þ S2Þ þ o2g=l̄0,

c0 ¼ fðc22 þ c23Þð�x
2
þ P2Þ þ o2g=c23; d 0 ¼ fðc22 þ c23Þð�x

2
þQ2Þ þ o2g=c23

and the expressions of R, S, P and Q are given by

R2;S2 ¼ x2 � 1
2
½‘1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘21 � 4‘2

q
�; P2;Q2 ¼ x2 � 1

2
½‘3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘23 � 4‘4

q
�.

The expressions of R2 and P2 are taken with ‘þ’ sign and the expressions of S2 and Q2 are taken with ‘�’ sign.
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The equation of motion in liquid medium is given by

r2C ¼
1

c2L

q2C
qt2

, (22)

where C is the displacement potential and cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lL=rL

p
is the velocity of sound in liquid, lL and rL being the

bulk modulus and density of the liquid, respectively.
Denoting the displacement potential function by fL1

and fL2
for the top and bottom layers of the liquid,

respectively, the normal component of displacement wLi
and pressure p in the liquid medium are given by

wLi
¼

qfLi

qz
; p ¼ rLo

2fLi
(23)

(i ¼ 1 for the liquid in top layer and i ¼ 2 for the liquid in bottom layer).
The time harmonic solutions of Eq. (22) in top and bottom liquid layers are given by (see Ref. [2])

fL1
¼ F1 sinfT ½z� ðd þ hÞ�geiðxx�otÞ for ½dpzpðd þ hÞ�, (24)

fL2
¼ F 2 sinfT ½zþ ðd þ hÞ�geiðxx�otÞ for ½�ðd þ hÞpzp� d�, (25)

where F 1 and F2 are unknown, T2 ¼ K2
L � x2 and KL ¼ o=cL:

To derive the frequency equation for Rayleigh–Lamb waves in the plate considered, we shall use the
following boundary conditions at the solid–liquid interfaces.

3. Boundary conditions

Since we are considering an inviscid liquid, the relevant boundary conditions at the solid/liquid interface will
be the continuity of displacement and stresses. Since the liquid does not support shear stress, therefore, at
liquid–solid interface, the normal stress must be equal to the pressure in the liquid layer and shear stress must
vanish. Also, as one cannot protect the flow of liquid over a solid, the continuity condition cannot be put on
displacement component along x-axis, however normal component of displacement must be continuous at
liquid–solid interface. Mathematically, these boundary conditions are

tzx ¼ 0; tzz ¼ �p and w ¼ wL. (26)

These constitute three boundary conditions. However, to solve a boundary-value problem at the interface of
interest, we need two more conditions. The balance of moment of momentum across the interface of two
microstretch elastic solids requires the continuity of normal component of couple stress and continuity of
microstretch vector. In the present instance, we have the interface between a microstretch elastic solid and an
inviscid liquid. Since our liquid neither exhibit micropolarity nor microstretch property, therefore, at
liquid–solid interface, the couple stress tensor and the microstretch tensor must vanish. These conditions can
be written as

mzy ¼ 0 and bz ¼ 0. (27)

These are the remaining two boundary conditions we need.
The boundary conditions on the displacement fields are purely kinematic, so the boundary conditions on

microrotation and microstretch cannot be ruled out. We see that other set of boundary conditions are also
possible for the present case. These are the vanishing of microrotation and microstretch of the solid at
liquid–solid interface as our liquid cannot support both (however, one can consider such a liquid in which
both microrotation and microstretch are non-null). Therefore, one can use the following boundary conditions
in place of those given in Eq. (27):

L ¼ 0 and P ¼ 0. (28)

Thus, we see that there are two sets of boundary conditions at the solid–liquid interfaces z ¼ �d. These are:
Set I: tzx ¼ 0, mzy ¼ 0, bz ¼ 0, tzz ¼ �p, w ¼ wL.
Set II: tzx ¼ 0, L ¼ 0, P ¼ 0, tzz ¼ �p, w ¼ wL.
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Using Eqs. (18)–(21), (23)–(25) and relevant quantities from Eqs. (4)–(6) into the boundary conditions given
in Set-I, we shall obtain the following 10 homogeneous equations in 10 unknown, namely A, B, C, D, E, F , G,
H, F 1 and F2, given by

½�lx2 þ ðlþ 2mþ KÞR2 þ l0a�ðA sinhRd þ B coshRdÞ þ ½�lx2 þ ðlþ 2mþ KÞS2 þ l0b�

�ðC sinhSd þD coshSdÞ � ixPð2mþ KÞðE coshPd þ F sinhPdÞ � ixQð2mþ KÞ

�ðG coshQd þH sinhQdÞ � rLo
2F1 sinTh ¼ 0, ð29Þ

½�lx2 þ ðlþ 2mþ KÞR2 þ l0a�ð�A sinhRd þ B coshRdÞ þ ½�lx2 þ ðlþ 2mþ KÞS2 þ l0b�

�ð�C sinhSd þD coshSdÞ � ixPð2mþ KÞðE coshPd � F sinhPdÞ � ixQð2mþ KÞ

�ðG coshQd �H sinhQdÞ þ rLo
2F 2 sinTh ¼ 0, ð30Þ

ixRð2mþ KÞ½A coshRd þ B sinhRd� þ ixSð2mþ KÞ½C coshSd þD sinhSd�

þ ½mx2 þ ðmþ KÞP2 � Kc0�ðE sinhPd þ F coshPdÞ þ ½mx2 þ ðmþ KÞQ2 � Kd 0�

�ðG sinhQd þH coshQdÞ ¼ 0, ð31Þ

ixRð2mþ KÞ½A coshRd � B sinhRd� þ ixSð2mþ KÞ½C coshSd �D sinhSd�

þ ½mx2 þ ðmþ KÞP2 � Kc0�ð�E sinhPd þ F coshPdÞ þ ½mx2 þ ðmþ KÞQ2 � Kd 0�

�ð�G sinhQd þH coshQdÞ ¼ 0, ð32Þ

Pc0ðE coshPd þ F sinhPdÞ þQd 0ðG coshQd þH sinhQdÞ ¼ 0, (33)

Pc0ðE coshPd � F sinhPdÞ þQd 0ðG coshQd �H sinhQdÞ ¼ 0, (34)

RðA coshRd þ B sinhRdÞ þ SðC coshSd þD sinhSdÞ

� ixðE sinhPd þ F coshPd þ G sinhQd þH coshQdÞ � TF1 cosTh ¼ 0, ð35Þ

RðA coshRd � B sinhRdÞ þ SðC coshSd �D sinhSdÞ

� ixð�E sinhPd þ F coshPd � G sinhQd þH coshQdÞ � TF 2 cosTh ¼ 0, ð36Þ

aRðA coshRd þ B sinhRdÞ þ bSðC coshSd þD sinhSdÞ ¼ 0, (37)

aRðA coshRd � B sinhRdÞ þ bSðC coshSd �D sinhSdÞ ¼ 0. (38)

For non-trivial solution of these equations, the determinant of their coefficient matrix should vanish. For

Ta0 and Tha
ð2n� 1Þp

2
ðn ¼ 1; 2; . . .Þ,

this determinantal equation leads to the following frequency equations for symmetric (with index ‘þ1’) and
antisymmetric (with index ‘�1’) modes of vibrations, respectively

ðaRM2ðcothSdÞ�1 � bSM1ðcothRdÞ�1ÞðPc0N2ðcothPdÞ�1 �Qd 0N1ðcothQdÞ�1Þ

� ðb� aÞðd 0 � c0Þx2M2
3RSPQðcothQd cothPdÞ�1

¼ �RSðb� aÞ
rLo

2

T
tanTh½x2M3ðQd 0ðcothQdÞ�1

� c0PðcothPdÞ�1Þ � ðQd 0N1ðcothQdÞ�1 � c0PN2ðcothPdÞ�1Þ�, ð39Þ

where

M1 ¼ �lx
2
þ ðlþ 2mþ KÞR2 þ l0a; M2 ¼ �lx

2
þ ðlþ 2mþ KÞS2 þ l0b,

M3 ¼ ð2mþ KÞ; N1 ¼ mx2 þ ðmþ KÞP2 � Kc0; N2 ¼ mx2 þ ðmþ KÞQ2 � Kd 0.
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It can be seen that equations in Eq. (39) exhibit implicit functional relationship between phase velocity and
wavenumber, therefore, the symmetric and antisymmetric modes of Rayleigh–Lamb waves are dispersive in
nature. Moreover, the tanh and coth functions are multiple valued functions, therefore there exist infinite
number of modes of propagation.

Similarly, using the boundary conditions given in Set-II, we obtain the following frequency equations for
symmetric (with index ‘þ1’) and antisymmetric (with index ‘�1’) modes of propagation of Rayleigh–Lamb
waves, respectively.

ðaM2 � bM1Þ½aN2ðcothSdÞ�1 � bN1ðcothRdÞ�1�½M3d
0
ðtanhPdÞ�1 �M4c

0ðtanhQdÞ�1�

¼
rL

T
o2 tanTh½ðaSðcothSdÞ�1 � bRðcothRdÞ�1Þ

�ðN3d 0 �N4c0Þ � ixðaN2ðcothSdÞ�1 � bN1ðcothRdÞ�1Þðc0 � d 0Þ�. ð40Þ
4. Limiting cases

4.1. Symmetric vibrations

(i) For waves long compared with the thickness of the plate, the quantity xd is small and therefore Rd, Sd,
Pd; and Qd may be assumed small as long as c is finite. In this case, tanh x! x and from Eq. (39), we obtain
the following frequency equation for symmetric modes of vibration:

ðaR2M2 � bS2M1ÞðN2c
0 �N1d 0Þ � R2S2x2M2

3ðb� aÞðd 0 � c0Þ

¼ R2S2ðb� aÞ
rLo

2

T
tanTh½x2M3ðd

0
� c0Þ � ðN1d

0
�N2c

0Þ�. ð41Þ

In the absence of liquid layers, i.e. when rL ¼ 0, the above Eq. (41) reduces to

ðaR2M2 � bS2M1ÞðN2c0 �N1d
0
Þ � R2S2x2M2

3ðb� aÞðd 0 � c0Þ ¼ 0. (42)

This is the frequency equation for symmetric modes of vibration in a microstretch elastic plate with free
boundaries in the present case. Further, if we neglect the microstretch property from the plate, then we shall be
left with the problem of Lamb wave propagation in a micropolar elastic plate with free boundaries. Thus, by
putting l0 ¼ a0 ¼ l1 ¼ 0 and b=a ¼ 0, Eq. (42) reduces to

½ð2mþ KÞx2 � ro2�½N2c0 �N1d
0
� ¼ x2S02ð2mþ KÞ2ðc0 � d 0Þ, (43)

where

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �

ro2

lþ 2mþ K

s
.

This equation matches with the frequency equation as obtained by Nowacki and Nowacki [21] for the relevant
problem apart from notations.

Again, in the absence of micropolarity, i.e. when K ¼ d 0=c0 ¼ 0, we obtain from Eq. (43) after some
simplification

c2 ¼ 4b2 1�
b2

a2

� �
, (44)

where a2 ¼ ðlþ 2mÞ=r and b2 ¼ m=r. This equation exactly match with Lamb [1].
(ii) For very short waves as compared with the thickness of the plate, the quantity xd is large, therefore, the

quantities Rd, Sd, Pd and Qd are large as long as c is finite. In this case, tanh x! 1 and Eq. (39) for
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symmetric mode reduces to:

ðaRM2 � bSM1ÞðPc0N2 �Qd 0N1Þ � RSPQx2M2
3ðb� aÞðd 0 � c0Þ

¼ �RSðb� aÞ
rLo

2

T
tanTh½x2M2

3ðd
0Q� Pc0Þ � ðd 0QN1 � Pc0N2Þ�. ð45Þ

This is the frequency equation for Rayleigh waves in microstretch elastic half-space with liquid layers.
If we neglect the liquid layers, then the problem reduces to Rayleigh waves in microstretch elastic half-space.

To obtain the Rayleigh wave dispersion equation in microstretch elastic half-space, we shall put rL ¼ 0 into
Eq. (45) and obtaining

ðaRM2 � bSM1ÞðPc0N2 �Qd 0N1Þ ¼ RSPQx2M2
3ðb� aÞðd 0 � c0Þ. (46)

Again, if we remove the microstretch effect then the problem reduces to Rayleigh waves in micropolar elastic
half-space. By putting l0 ¼ a0 ¼ l1 ¼ b=a ¼ 0 into Eq. (46), we obtain

M2ðPc0N2 �Qd 0N1Þ ¼ �SPQx2M2
3ðd
0
� c0Þ. (47)

This equation is the Rayleigh wave dispersion equation in a micropolar elastic half-space earlier obtained by
De and Sengupta [22].

If we again neglect the micropolar effect, we shall obtain the Rayleigh wave dispersion equation in a
uniform elastic half-space. Thus, putting K ¼ d 0=c0 ¼ 0 into Eq. (47), we obtain

2�
c2

b2

� �2

¼ 4 1�
c2

a2

� �1=2

1�
c2

b2

� �1=2

, (48)

which is a well-known classical Rayleigh wave frequency equation in an elastic half-space.

4.2. Antisymmetric vibrations

(i) For waves long compared with the thickness of the plate, the quantity xd is small, therefore, the
quantities Rd;Sd;Pd and Qd are small. Using tanh x ’ x� ðx3=3Þ into Eq. (39) for antisymmetric mode, we
obtain the following equation:

ðaM2Y 1 � bM1Y 2ÞðP
2c0N2Z1 �Q2d 0N1Z2Þ � P2Q2x2M2

3ðb� aÞðd 0 � c0ÞZ1Z2

¼ �ðb� aÞ
rLo

2

Td
tanTh½x2M3ðQ

2d 0Z2 � P2c0Z1Þ � ðQ
2d 0N1Z2 � P2c0N2Z1Þ�, ð49Þ

where

Y 1 ¼ 1� ðSdÞ2=3; Y 2 ¼ 1� ðRdÞ2=3; Z1 ¼ 1� ðPdÞ2=3; Z2 ¼ 1� ðQdÞ2=3.

If we neglect the liquid layers, then by putting rL ¼ 0 into the above equation, we obtain

ðaM2Y 1 � bM1Y 2ÞðP
2c0N2Z1 �Q2d 0N1Z2Þ ¼ P2Q2x2M2

3ðb� aÞðd 0 � c0ÞZ1Z2. (50)

Now, if we further remove the microstretch effect from the plate, then Eq. (50) reduces to the following
equation, after putting l0 ¼ a0 ¼ l1 ¼ 0 and b=a ¼ 0:

M2 1�
ðSdÞ2

3

� �
c0N2

Q2Z2

�
d 0N1

P2Z1

� �
¼ x2M2

3ðc
0 � d 0Þ, (51)

where M2 ¼ �lx
2
þ ðlþ 2mþ KÞS2 and other symbols have their usual meanings. This equation is same as

obtained by Nowacki and Nowacki [21] for the relevant problem.
If we further remove the micropolar effect from the plate, then by using K ¼ 0 and d 0=c0 ¼ 0, in Eq. (51), we

obtain

c2 ¼
4

3
ðxdÞ2b2 1�

b2

a2

� �
. (52)
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This equation coincides with the equation for classical elasticity as given in Ewing et al. [6] for relevant
problem.

(ii) For very short waves compared with the thickness of the plate, the frequency equation (39) for antisymmetric
modes of vibration can be reduced to Eq. (45), in a similar way as done in case of symmetric vibrations.
5. Special cases

(i) If we remove the liquid layers from both sides of the plate, then we shall be left with the problem of wave
propagation in a microstretch plate with free faces. To do this, we shall put rL ¼ 0 into Eq. (39). The reduced
frequency equations for symmetric (with index ‘þ1’) and antisymmetric (with index ‘�1’) modes of vibrations
for the said case are given by

½aRM2ðcothSdÞ�1 � bSM1ðcothRdÞ�1�½Pc0N2ðcothPdÞ�1 �Qd 0N1ðcothQdÞ�1�

� ðb� aÞðd 0 � c0Þx2M2
3RSPQðcothQd cothPdÞ�1 ¼ 0. ð53Þ
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Fig. 2. Comparison of symmetric modes of microstretch plate bordered with liquid layers for Set-I and Set-II.
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Fig. 3. Comparison of real parts of symmetric modes of microstretch plate bordered with liquid layers and with free boundaries.
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Fig. 5. Comparison of attenuation in symmetric fundamental mode of microstretch plate and micropolar plate with free boundaries.
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Fig. 4. Comparison of real parts of symmetric modes of microstretch plate and micropolar plate with free boundaries.
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(ii) When microstretch effect is neglected from the plate, we shall be left with the problem of Lamb wave
propagation in micropolar plate bordered with liquid layers. In this case, we substitute l0 ¼ l1 ¼ a0 ¼ 0 and
b=a ¼ 0 in Eq. (39) and obtaining equations for symmetric (with index ‘þ1’) and antisymmetric (with index
‘�1’) mode, respectively, as

ðcothSdÞ�1½�lx2 þ ðlþ 2mþ KÞS2�½ðmx2 þ ðmþ KÞP2 � Kc0Þd 0QðcothQdÞ�1

� ðmx2 þ ðmþ KÞQ2 � Kd 0Þc0PðcothPdÞ�1� � x2PQSð2mþ KÞ2ðd 0 � c0ÞðcothQd cothPdÞ�1

¼ rLo
2 tanTh

S

T

� �
½ðmx2 þ ðmþ KÞP2 � Kc0ÞQd 0ðcothQdÞ�1 � c0P½mx2 þ ðmþ KÞQ2 � Kd 0�

� ðcothPdÞ�1 � x2ð2mþ KÞ½Pc0ðcothPdÞ�1 �Qd 0ðcothQdÞ�1��. ð54Þ

These equations exactly match with Eqs. (30) and (31) of Tomar [19] apart from notations.
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Further, if we neglect the liquid layers, we shall be left with the problem of wave propagation in a
micropolar plate with free boundaries. For this, putting rL ¼ 0 into Eq. (54), we obtain

ðcothSdÞ�1½�lx2 þ ðlþ 2mþ KÞS2�½ðmx2 þ ðmþ KÞP2 � Kc0Þd 0QðcothQdÞ�1 � ðmx2 þ ðmþ KÞQ2

� Kd 0Þc0PðcothPdÞ�1� � x2PQSð2mþ KÞ2ðd 0 � c0ÞðcothQd cothPdÞ�1 ¼ 0, ð55Þ

which are the frequency equations for symmetric (with index ‘þ1’) and antisymmetric (with index ‘�1’) modes
for Lamb waves in micropolar elastic plate with free boundaries.

(iii) When h!1, then tanTh! i and the equations in Eq. (39) for symmetric (with index ‘þ1’) and
antisymmetric (with index ‘�1’) mode, respectively, reduce to the followings:

½aRM2ðcothSdÞ�1 � bSM1ðcothRdÞ�1�½Pc0N2ðcothPdÞ�1 �Qd 0N1ðcothQdÞ�1�

� ðb� aÞðd 0 � c0Þx2M2
3RSPQðcothQd cothPdÞ�1
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Fig. 6. Comparison of attenuation in symmetric first mode of microstretch plate and micropolar plate with free boundaries.
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ARTICLE IN PRESS

0

2

4

6

A
tt

e
n

u
a

ti
o

n

10.0 20.0 30.0 40.0 50.0

Non dimensional Wavenumber

Solid curves - Microstretch plate with free boundaries

Dashed curves - Micropolar plate with free boundaries

Fig. 9. Comparison of attenuation in symmetric fourth mode of microstretch plate and micropolar plate with free boundaries.

0

2

4

6

8

A
tt
e
n
u
a
ti
o
n

10.0 20.0 30.0 40.0 50.0

Non dimensional Wavenumber

Solid curves - Microstretch plate with free boundaries

Dashed curves - Micropolar plate with free boundaries

Fig. 8. Comparison of attenuation in symmetric third mode of microstretch plate and micropolar plate with free boundaries.

D. Singh, S.K. Tomar / Journal of Sound and Vibration 302 (2007) 313–331324
¼ �RSðb� aÞi
rLo

2

T
½x2M3½Qd 0ðcothQdÞ�1 � c0PðcothPdÞ�1�

� ½Qd 0N1ðcothQdÞ�1 � c0PN2ðcothPdÞ�1��. ð56Þ

These equations are, respectively, the dispersion equations for symmetric (with index ‘þ1’) and antisymmetric
(with index ‘�1’) modes of leaky Lamb waves in microstretch elastic plate bordered with identical inviscid
liquid half-space on both sides.

(iv) When microstretch and micropolar effects are neglected from the plate, we shall make use of K ¼

a0 ¼ l1 ¼ l0 ¼ 0 and b=a ¼ 0 and d 0=c0 ¼ 0. Using these values into equations in Eq. (39), we obtain the
equations for symmetric (with index ‘þ1’) and antisymmetric (with index ‘�1’) modes of Lamb wave
propagation in elastic plate bordered with liquid layers as

M2N2 cothSd tanhQdð Þ
�1
� SQx2M2

3 ¼ �S
rLo

2

T
tanTh tanhQdð Þ

�1
ðx2M3 �N2Þ. (57)
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Equations in Eq. (57) are the same as Eqs. (5) and (6) obtained for the relevant problem by Wu and Zu [2]
apart from notations.

(v) If we neglect the liquid layers from the elastic plate in case (iv), we obtain the problem of Lamb wave
propagation in elastic plate. Putting rL ¼ 0 in the case (iv), the equations reduce to

M2N2ðcothSd tanhQdÞ�1 � SQx2M2
3 ¼ 0. (58)

These equations can be re-written in the following well-known equations:

2�
c2

c22

� �2
tanhQd

tanhSd

� ��1
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c2

c21

� �
1�

c2

c22

� �s
, (59)

where c21 ¼ ðlþ 2mÞ=r and c22 ¼ m=r. These equations exactly match with those obtained by Lamb [1] for the
relevant problem.
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Fig. 10. Comparison of antisymmetric modes of microstretch plate bordered with liquid layers for Set-I and Set-II.
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Fig. 13. Comparison of attenuation in antisymmetric fundamental mode of microstretch plate and micropolar plate with free boundaries.
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Fig. 12. Comparison of real parts of antisymmetric modes of microstretch plate and micropolar plate with free boundaries.
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It can be verified that if we neglect the micropolar effect, microstretch effect and liquid layers from the
problem, then equations in Eq. (40) reduce to corresponding equations in Eq. (59) for Lamb waves in elastic
plate given by Lamb [1].
6. Numerical results and discussions

Frequency equations for Rayleigh–Lamb waves are solved numerically for a particular model using
functional iteration method. Following values of relevant elastic parameters have been taken.

For microstretch elastic plate, the values are

l ¼ 7:583� 1011 dyn=cm2; m ¼ 6:334� 1011 dyn=cm2; K ¼ 0:0149� 1011 dyn=cm2,

l0 ¼ 0:773� 1011 dyn=cm2; l1 ¼ 0:030� 1011 dyn=cm2; a0 ¼ 0:085� 1011 dyn,
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g ¼ 2:89� 1011 dyn; j ¼ 0:000625 cm2; r ¼ 1:2 g=cm3; d ¼ 1:5 cm

and for liquid layers the values are

rL ¼ 1:1 g=cm3; lL ¼ 0:245� 1011 dyn=cm2; h ¼ 0:5 cm.

We have computed the non-dimensional phase velocity ðc=V Þ, ðV 2 ¼ c21 þ c23Þ at different values of non-
dimensional wavenumber ðxdÞ. The values of velocity ratio ðc=V Þ are computed from the frequency equation
(39) obtained by using the boundary conditions given in Set-I and Eq. (40) obtained by using the boundary
conditions given by Set-II for different values of wavenumber ‘xd’. For real values of ðxdÞ, the real values of
phase velocity ðc=V Þ are found for microstretch plate bordered with liquid layers and for micropolar plate
bordered with liquid layers. The results obtained for symmetric modes (s-mode) and antisymmetric modes
(a-mode) are depicted graphically through Figs. 2–18. In case of microstretch plate with free boundaries and in
case of micropolar plate with free boundaries, the waves are found to attenuate.
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Fig. 14. Comparison of attenuation in antisymmetric first mode of microstretch plate and micropolar plate with free boundaries.
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Fig. 16. Comparison of attenuation in antisymmetric third mode of microstretch plate and micropolar plate with free boundaries.
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Fig. 17. Comparison of attenuation in antisymmetric fourth mode of microstretch plate and micropolar plate with free boundaries.
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In Fig. 2, we have depicted the dispersion curves for fundamental, first, second, third and fourth symmetric
modes of Rayleigh–Lamb wave propagation in microstretch plate bordered with liquid layers. It is clear from
this figure that the dispersion curves for symmetric modes corresponding to the Set-I and Set-II of boundary
conditions do not differ significantly. Thus, we conclude that one can choose any set of the boundary
conditions.

In Fig. 3, we have depicted the dispersion curves for first five symmetric modes of vibration in microstretch
plate bordered with liquid layers and in microstretch plate with free boundaries. It is found that for real values
of wavenumbers, the phase velocity is real in microstretch plate bordered with liquid layers, while it is complex
for microstretch plate with free boundaries. In this figure, the dotted curves correspond to the real part of the
phase velocity. We note that the real part of phase velocity for microstretch plate with free boundaries is
greater than that of the phase velocity of microstretch plate bordered with liquid layers. Thus, we conclude
that the presence of the liquid layers results in decrease the phase velocity of the Rayleigh–Lamb waves in
symmetric modes.
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In Fig. 4, we have depicted the real parts of the phase velocities for the first five symmetric modes of
vibration in microstretch plate with free boundaries and for micropolar plate with free boundaries. No
significant difference between these velocities is observed. Thus, no considerable effect of microstretch
property is noticed on the symmetric modes of Rayleigh–Lamb wave propagation.

Figs. 5–9 depict the comparison of attenuation coefficients for fundamental, first, second, third and fourth
symmetric modes of microstretch plate and micropolar plate with free boundaries, respectively. The
attenuation coefficients are found to be very small in magnitude, therefore to plot the variation of these
coefficients, we have multiplied their original values by the factor 106. Solid curve corresponds to the
microstretch plate with free boundaries, while dotted curve corresponds to the micropolar plate with free
boundaries. It is clear that there is a significant effect of microstretch property on the attenuation coefficient of
the symmetric modes of Rayleigh–Lamb waves. We note that the presence of microstretch property is
responsible for lowering down the attenuation of waves for symmetric modes.

Fig. 10 depicts the dispersion curves from fundamental to fourth antisymmetric modes of Rayleigh–Lamb
wave propagation in a microstretch plate bordered with liquid layers corresponding to the boundary
conditions given in Set-I and Set-II. The curves obtained are almost same for these two sets of boundary
conditions. Thus, we again conclude that there is no significant difference in the phase velocity of
antisymmetric modes of Rayleigh–Lamb waves for these two sets of boundary conditions.

Fig. 11 depicts the comparison of dispersion curves of fundamental to fourth modes of antisymmetric
vibration in a microstretch plate bordered with liquid layers and in a microstretch plate with free boundaries.
It is found that in the antisymmetric modes of propagation, the phase velocity in the microstretch plate with
free boundaries is greater than that of in the microstretch plate bordered with liquid layers.

Fig. 12 depicts the dispersion curves for fundamental to fourth antisymmetric modes for microstretch plate
and micropolar plate with free boundaries. We Note that there is no significant effect of microstretch property
on real part of phase velocity for microstretch plate with free boundaries in antisymmetric modes.

Figs. 13–17 depict the attenuation coefficient for fundamental to fourth antisymmetric modes of
Rayleigh–Lamb wave propagation of microstretch plate and of micropolar plate with free boundaries. Here
solid curves and dotted curves correspond to microstretch plate and micropolar plate, respectively. Since the
attenuation coefficients, in this case also, are found very small in magnitude, therefore, they have been plotted
after multiplying their original values by a factor 106. It is observed that attenuation is strongly affected by the
presence of microstretch in antisymmmetric modes also and it increases the attenuation for all these five
modes.
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Fig. 18 depicts the dispersion curves for fundamental symmetric mode at different thickness of liquid layers.
We see that as the width of liquid layers increases, the phase velocity for fundamental symmetric mode
decreases.

7. Conclusions

In this paper, we have described the effect of microstretch property on the propagation of Rayleigh–Lamb
waves in a microstretch plate cladded with inviscid liquid layers. We have two sets of boundary conditions at
the interfaces of the plate and the liquid layers. Dispersion equations for symmetric and antisymmetric modes
for microstretch plate cladded with inviscid and non-polar liquid layers are derived using both these sets of
boundary conditions. The frequency equations are solved numerically and dispersion curves are depicted
graphically. We conclude that
(i)
 The choice on the boundary conditions at the interfaces of the plate and the liquid layers is arbitrary.
Results obtained from both the sets of boundary conditions give same dispersion curves for
Rayleigh–Lamb wave propagation in symmetric and antisymmetric modes. So one can choose either
Set-I or Set-II of the boundary conditions.
(ii)
 It is noted that the presence of cladded liquid layers in a microstretch plate decreases the phase velocity for
both symmetric and antisymmetric modes of Rayleigh–Lamb wave propagation. For real values of
wavenumbers, the frequency equations give real phase velocity, when plate is cladded with liquid layers,
otherwise it gives complex values of phase velocity. Thus, the waves are non-attenuated, when plate is cladded
with liquid layers, while the waves are found to be attenuated when both the faces of the plate are free.
(iii)
 There is no significant effect of microstretch property on the dispersion curves of real phase velocity of
symmetric and antisymmetric modes in microstretch plate with free boundaries. This may be due to small
values of microstretch parameters considered here. However, one can hope that for large values of
microstretch parameters, the concerned dispersion curves might be affected significantly.
(iv)
 The attenuation is highly affected by the presence of microstretch in the plate with free boundaries for
both the symmetric as well as the antisymmetric modes of Rayleigh–Lamb wave propagation.
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